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Graphs, =
Spectra and
Convex Geometry *

Course Coordinator
Prof. Arvind Ayyer,
Department of Mathematics,liSc

Date:
July 28 to August 1, 2025

Offline

Who Should Attend

* Researchers, graduate students and advanced undergraduates in mathematics, computer science
and engineering.
* 'The only prerequisites are linear algebra and an interest in computation.

Objectives

* The key objective of this course is to expose students to several different parts of mathematics
that interact with problems on graphs, namely combinatorics, convex geometry and convex
optimization.

* A second goal will be to connect to applications.

* Last goal will be hands-on computation using software such as Mathematica, allowing students
to experiment and discover new results.

The Faculty

Prof. Rekha Thomas is at the Department of Mathematics at the University of Washington
in Seattle, where she is also the director of the undergraduate program. She received a Ph.D.
in Operations Research from Cornell University in 1994 followed by postdoctoral positions
at the Cowles Foundation for Economics at Yale University and the Konrad-Zuse-Zentrum
for Informationstechnik in Berlin. Her interests are in optimization and applied algebraic
geometry.

Prof. Arvind Ayyer is at the Department of Mathematics at the Indian Institute of
Science. He obtained his Ph. D. from Rutgers University followed by postdoctoral
positions at CEA Saclay and UC Davis. His interests are in algebraic and enumerative
combinatorics, probability and mathematical physics.




Overview

Many real-world problems are naturally modeled by graphs, with vertices representing entities
and (weighted) edges representing the relationship between pairs of entities. For example, in a
large data setting, one might have blood pressure information of 10,00,000 people who form
vertices of a graph with edges connecting people with similar health profiles. One can compute
the average blood pressure of the population by taking the weighted average of a well-chosen
graphical design (a small set of people) on the graph. This will be far more accurate than a
random sampling of vertices. Designs are also related to random walks and equidistribution in
graphs. Graph sparsifiers are like designs in the sense that they “approximate” the original graph
well in some specified sense allowing computations to scale. Graph sparsification has attracted a
great deal of attention in the computer science community with the work of Spielman,
Srivastava and collaborators. In this context, one can ask the question: “Which graphs cannot be
sparsified nontrivially?”. This leads to a notion of conformally rigidity in graphs.

This course will introduce graphical designs, graph sparsifiers and conformal rigidity in graphs.
These are all concerned with the geometry of a combinatorial graph G= (V, E) and the
eigenvalues and eigenvectors of its Laplacian matrix. Such problems belong, broadly interpreted,
to the area of spectral graph theory; a particular novelty here are the strong ties to the geometry
of polytopes, the theory of spherical designs, packing problems on graphs and coding theory.
Stepping beyond combinatorics, they also connect to harmonic analysis, probability and convex
optimization. Finite Cayley graphs are particularly natural, which leads to some additional
influx from group theory.

We now explain these problems in detail. The first problem is about graphical designs in
an unweighted graph which are discrete analogs of spherical designs and Platonic bodies.
It is a subset of vertices with weights so that the global average of a sufficiently smooth
function on the graph agrees with the weighted average of the function on this subset. Via
the powerful theory of Gale duality, designs can be organized on the faces of special
polytopes.

The second problem is about the geometry of graph sparsifiers (weighted subgraphs).
Sparsifiers that share the initial part of the spectral information of the graph retain
important global properties of the graph. The set of all such sparsifiers will be shown to be
a special convex body called a spectrahedron.

A combinatorial graph G= (V, E) can be thought of as a weighted graph G= (V, E, w) with
the edge weights 1 for all edges. The algebraic connectivity of G is defined as the smallest
non-trivial eigenvalue of the Laplacian matrix. A natural question is whether one can
increase connectivity by changing the edge weights. This would, for instance, lead to faster
mixing Markov chains on G. Analogously, one can look for weights that minimize the
largest eigenvalue. An orthogonal take is to ask which combinatorial graphs (with edge

weights 1) are already optimal for the problems of maximizing and minimizing the above

cigenvalues. Such conformally rigid graphs include edge-transitive graphs,
distance-regular graphs and some (but not all) Cayley graphs. Conformal rigidity can be
checked via semidefinite programming (whose feasible regions are spectrahedra!), and
pose several interesting open problems.

More details https://cce.iisc.ac.in/gian-courses/



Fig 1 : A graphical design in the truncated
cuboctohedral graph

Fig 3: The conformally rigid crossing number graph 6B

Fees

The participation fees for taking the course is as follows:

o  Participants from abroad : US $150 (additional charges may apply)
e  Industry/ Research Organizations: INR 10,000 + 18% GST

e  Academic Institutions: INR 5,000 + 18% GST

e  Students: INR 1,000 + 18% GST

o The above fee includes all instructional materials, computer use for tutorials

and assignments, laboratory equipment usage charges, 24 hour free internet facility.
o The participants will be provided with accommodation on a payment basis.
Contact Us

Centre for Continuing Education
Indian Institute of Science,

Bengaluru 560012, Karnataka, India
Phone: +91 080 2293 2055/2247/2491

To apply scan here
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